4.2 Article

Protective Role of HO-1 for Alcohol-Dependent Liver Damage

期刊

DIGESTIVE DISEASES
卷 28, 期 6, 页码 792-798

出版社

KARGER
DOI: 10.1159/000324287

关键词

HO-1; Hepatocytes; Quercetin; Oxidative stress

资金

  1. BMBF [01GG0732]

向作者/读者索取更多资源

Background/Aims: Alcoholic liver disease is continuously increasing in developed countries being a leading cause of death worldwide. Chronic ethanol consumption induces oxidative stress by accumulation of reactive oxygen intermediates (ROI) while reducing the cellular antioxidant defense. Induction of heme oxygenase-1 (HO-1) may protect primary human hepatocytes (hHeps) from such damage. Thus, the aim of this study was to investigate the potential of polyphenols to protect hHeps from ethanol-dependent oxidative damage. Methods: hHeps were isolated by collagenase perfusion. ROI and cellular glutathione (GSH) were measured by fluorescent-based assays. Cellular damage was determined by lactate dehydrogenase (LDH) leakage and staining for apoptosis and necrosis. Nuclear translocation of Nrf2 and HO-1 expression were analyzed by Western blot. Results: Ethanol and TGF-beta rapidly increase ROI and reduce GSH in hHeps, causing apoptosis with a release of approximately 40% total LDH after 72 h. Similar to incubation with hemin preincubation and co-incubation of cells with nifedipine, verapamil and quercetin significantly reduce oxidative stress and resulting cellular damage, in a dose-dependent manner, by initiating nuclear translocation of Nrf2 which in turn induces HO-1 under the control of p38 and ERK. Blocking of HO-1 activity with ZNPP9 reverses the protective effect of all three substances. Conclusion: Our results suggest that increasing HO-1 activity in hHeps protects them from oxidative stress-dependent damage. As polyphenols have great potential to induce HO-1 expression, they may play an important role for future therapeutic strategies to protect liver from oxidative stress-dependent damage observed during chronic alcohol consumption. Copyright (C) 2011 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据