4.6 Article Proceedings Paper

Electronic and surface properties of H-terminated diamond surface affected by NO2 gas

期刊

DIAMOND AND RELATED MATERIALS
卷 19, 期 7-9, 页码 889-893

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2010.02.021

关键词

Diamond film; Adsorption; Passivation; Surface characterization; High-frequency device

向作者/读者索取更多资源

Hydrogen-terminated diamond surface exhibits p-type conductivity during its exposure to air. To investigate this phenomenon, we examined the influence of different gases on the surface conductivity. Exposure to NO2 gas resulted in the biggest increase in conductivity, while H2O vapor decreased the surface conductivity. Moreover, even very low concentrations of NO2 molecules in air increased the hole sheet concentration, and with increasing NO2 concentration, the hole sheet concentration increased up to 2.3 x 10(14) cm(-2) (at 300 ppm NO2). This increase of hole sheet concentration was observed during exposure to NO2 gas and simultaneous adsorption of NO2 molecules on the diamond surface, while it decreased when the exposure stopped and NO2 molecules desorbed from the surface. X-ray photoelectron spectroscopy investigation showed upward band bending and partial oxidation of the hydrogen-terminated surface after exposure to air and NO2. FETs exposed to NO2 gas exhibited lower source and drain resistances, which led to a 1.8-fold increase of maximum drain current, transconductance increased 1.5-fold and maximum frequency of oscillation increased 1.6-fold. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据