4.7 Article

C-peptide reduces high-glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation in human aortic endothelial cells

期刊

DIABETOLOGIA
卷 54, 期 10, 页码 2702-2712

出版社

SPRINGER
DOI: 10.1007/s00125-011-2251-0

关键词

Apoptosis; Complications; C-peptide; Diabetes; Endothelial cells; Endothelial dysfunction; Inflammation; NAD(P)H; ROS; Vascular

资金

  1. Research Advisory Committee (RAC)
  2. Childrens Hospital of Pittsburgh
  3. Henry Hillman Endowment Chair in Pediatric Immunology
  4. National Institute of Health [DK 024021-24]
  5. Department of Defense [NIH 5 K12 DK063704, W81XWH-10-1-1055]

向作者/读者索取更多资源

Reactive oxygen species (ROS) generated during hyperglycaemia are implicated in the development of diabetic vascular complications. High glucose increases oxidative stress in endothelial cells and induces apoptosis. A major source of ROS in endothelial cells exposed to glucose is the NAD(P)H oxidase enzyme. Several studies demonstrated that C-peptide, the product of proinsulin cleavage within the pancreatic beta cells, displays anti-inflammatory effects in certain models of vascular dysfunction. However, the molecular mechanism underlying this effect is unclear. We hypothesised that C-peptide reduces glucose-induced ROS generation by decreasing NAD(P)H oxidase activation and prevents apoptosis Human aortic endothelial cells (HAEC) were exposed to 25 mmol/l glucose in the presence or absence of C-peptide and tested for protein quantity and activity of caspase-3 and other apoptosis markers by ELISA, TUNEL and immunoblotting. Intracellular ROS were measured by flow cytometry using the ROS sensitive dye chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H-2-DCDFA). NAD(P)H oxidase activation was assayed by lucigenin. Membrane and cytoplasmic levels of the NAD(P)H subunit ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) (RAC-1) and its GTPase activity were studied by immunoblotting and ELISA. RAC-1 (also known as RAC1) gene expression was investigated by quantitative real-time PCR. C-peptide significantly decreased caspase-3 levels and activity and upregulated production of the anti-apoptotic factor B cell CLL/lymphoma 2 (BCL-2). Glucose-induced ROS production was quenched by C-peptide and this was associated with a decreased NAD(P)H oxidase activity and reduced RAC-1 membrane production and GTPase activity. In glucose-exposed endothelial cells, C-peptide acts as an endogenous antioxidant molecule by reducing RAC-1 translocation to membrane and NAD(P)H oxidase activation. By preventing oxidative stress, C-peptide protects endothelial cells from glucose-induced apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据