4.7 Article

Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes

期刊

DIABETOLOGIA
卷 52, 期 8, 页码 1628-1637

出版社

SPRINGER
DOI: 10.1007/s00125-009-1405-9

关键词

De novo lipogenesis; Deuterium incorporation; Dietary carbohydrate; Dietary fat; Fat metabolism; Fatty acid composition; Mass spectrometry; Plasma triacylglycerols; Type 2 diabetes mellitus; VLDL

资金

  1. Canadian Diabetes Association
  2. Canola Council of Canada
  3. Natural Sciences and Engineering Research Council (NSERC)

向作者/读者索取更多资源

It is recommended that patients with diabetes reduce their intake of saturated fat and increase their intake of monounsaturated fat or carbohydrate. However, high-carbohydrate diets may result in higher saturated fatty acids in VLDL-triacylglycerol. This is attributed to de novo lipogenesis, although synthesis of specific fatty acids is rarely measured. The objective of this study was to examine the contribution of de novo fatty acid synthesis to VLDL-triacylglycerol composition. It was hypothesised that levels of total and de novo synthesised fatty acids would increase with increased carbohydrate intake in diabetic participants. Seven individuals with type 2 diabetes mellitus and seven matched non-diabetic controls consumed two diets differing in fat energy (lower fat < 25%, higher fat > 35%) for 3 days in a randomised crossover design. Blood samples were drawn before and 24 h after the ingestion of H-2-labelled water. In the control participants, the higher-fat diet resulted in a 40% reduction in VLDL-triacylglycerol fatty acids because of decreases in myristic, palmitic, palmitoleic and linoleic acids, but the opposite trend occurred in participants with diabetes. The lower-fat diet increased the fractional synthesis rate by 35% and 25% in the control and diabetes participants, respectively (range: 0-33%). Palmitate accounted for 71% of fatty acids synthesised (range: 44-84% total de novo synthesised fatty acids). H-2 incorporation was used for the first time in humans showing variability in the synthesis rate of specific fatty acids, even palmitic acid. A lower-fat diet stimulated saturated fatty acid synthesis at high rates, but no net stimulation of synthesis of any fatty acid occurred in the diabetes group. The implications of this finding for our understanding of lipid metabolism in diabetes require further investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据