4.8 Article

Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities

期刊

ACS NANO
卷 9, 期 7, 页码 7343-7351

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b02337

关键词

nanoholes; defect-laden graphene; CO oxidation; hydrogen storage; catalyst

资金

  1. National Research Foundation of Korea - Korean Government [2012R1A2A2A0104754]
  2. [IBS-R004-G4]

向作者/读者索取更多资源

Atomic-scale defects on carbon nanostructures have been considered as detrimental factors and critical problems to be eliminated in order to fully utilize their intrinsic material properties such as ultrahigh mechanical stiffness and electrical conductivity. However, defects that can be intentionally controlled through chemical and physical treatments are reasonably expected to bring benefits in various practical engineering applications such as desalination thin membranes, photochemical catalysts, and energy storage materials. Herein, we report a defect-engineered self-assembly procedure to produce a three-dimensionally nanohole-structured and palladium-embedded porous graphene hetero-nanostructure having ultrahigh hydrogen storage and CO oxidation multifunctionalities. Under multistep microwave reactions, agglomerated palladium nanoparticles having diameters of similar to 10 nm produce physical nanoholes in the basal-plane structure of graphene sheets, while much smaller palladium nanoparticles are readily impregnated inside graphene layers and bonded on graphene surfaces. The present results show that the defect-engineered hetero-nanostructure has a similar to 5.4 wt % hydrogen storage capacity under 7.5 MPa and CO oxidation catalytic activity at 190 degrees C The defect-laden graphene can be highly functionalized for multipurpose applications such as molecule absorption, electrochemical energy storage, and catalytic activity, resulting in a pathway to nanoengineering based on underlying atomic scale and physical defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据