4.6 Review

Brain lipid sensing and nervous control of energy balance

期刊

DIABETES & METABOLISM
卷 37, 期 2, 页码 83-88

出版社

MASSON EDITEUR
DOI: 10.1016/j.diabet.2010.11.001

关键词

Hypothalamus; FAT/CD36; Potassium channel; Energy balance; Review

向作者/读者索取更多资源

Nutrient sensitive neurons (glucose and fatty acids (FA)) are present in many sites throughout the brain, including the hypothalamus and brainstem, and play a key role in the neural control of energy and glucose homeostasis. Through neuronal output, FA may modulate feeding behaviour as well as both insulin secretion and action. For example, central administration of oleate inhibits food intake and glucose production in rats. This suggests that daily variations in plasma FA concentrations might be detected by the central nervous system as a signal which contributes to the regulation of energy balance. At the cellular level, subpopulations of neurons in the ventrornedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Possible molecular effectors of these FA effects likely include chloride or potassium ion channels. While intracellular metabolism and activation of the ATP-sensitive K+ channel appear to be necessary for some of the signaling effects of FA, at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, a FA transporter/receptor that does not require intracellular metabolism to activate downstream signaling. Thus, FA or their metabolites can modulate neuronal activity as a means of directly monitoring ongoing fuel availability by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. Besides these physiological effects, FA overload or metabolic dysfunction might impair neural control of energy homeostasis and contribute to obesity and/or type 2 diabetes in predisposed subjects. (C) 2010 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据