4.7 Article

RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate

期刊

DIABETES
卷 63, 期 6, 页码 1978-1993

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db13-1383

关键词

-

资金

  1. European Union (project BetaBat in Seventh Framework Programme)
  2. Fonds National de la Recherche Scientifique (FNRS)
  3. JDRF [JDRF 37-2012-5, 17-2012-114]
  4. Actions de Recherche Concertees de la Communaute Francaise, Belgium
  5. National Institute for Health Research [NF-SI-0611-10099] Funding Source: researchfish

向作者/读者索取更多资源

Pancreatic beta-cell dysfunction and death are central in the pathogenesis of type 2 diabetes (T2D). Saturated fatty acids cause beta-cell failure and contribute to diabetes development in genetically predisposed individuals. Here we used RNA sequencing to map transcripts expressed in five palmitate-treated human islet preparations, observing 1,325 modified genes. Palmitate induced fatty acid metabolism and endoplasmic reticulum (ER) stress. Functional studies identified novel mediators of adaptive ER stress signaling. Palmitate modified genes regulating ubiquitin and proteasome function, autophagy, and apoptosis. Inhibition of autophagic flux and lysosome function contributed to lipotoxicity. Palmitate inhibited transcription factors controlling beta-cell phenotype, including PAX4 and GATA6. Fifty-nine T2D candidate genes were expressed in human islets, and 11 were modified by palmitate. Palmitate modified expression of 17 splicing factors and shifted alternative splicing of 3,525 transcripts. Ingenuity Pathway Analysis of modified transcripts and genes confirmed that top changed functions related to cell death. Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of transcription factor binding sites in palmitate-modified transcripts revealed a role for PAX4, GATA, and the ER stress response regulators XBP1 and ATF6. This human islet transcriptome study identified novel mechanisms of palmitate-induced beta-cell dysfunction and death. The data point to cross talk between metabolic stress and candidate genes at the beta-cell level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据