4.7 Article

Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development

期刊

DIABETES
卷 60, 期 11, 页码 3006-3014

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db11-0589

关键词

-

资金

  1. Dana Foundation
  2. National Institutes of Health [DK064832, DK064832-06, DK064832-06S1, DK064832-06S2, UL1 RR024992]

向作者/读者索取更多资源

OBJECTIVE The impact of type 1 diabetes mellitus (T1DM) on the developing central nervous system is not well understood. Cross-sectional, retrospective studies suggest that exposure to glycemic extremes during development is harmful to brain structure in youth with T1DM. However, these studies cannot identify brain regions that change differentially over time depending on the degree of exposure to glycemic extremes. RESEARCH DESIGN AND METHODS We performed a longitudinal, prospective structural neuroimaging study of youth with T1DM (n = 75; mean age = 12.5 years) and their nondiabetic siblings (n = 25; mean age = 12.5 years). Each participant was scanned twice, separated by 2 years. Blood glucose control measurements (HbA(1c), glucose meter results, and reports of severe hypoglycemia) were acquired during the 2-year follow-up. Sophisticated image registration algorithms were performed, followed by whole brain and voxel-wise statistical analyses of the change in gray and white matter volume, controlling for age, sex, and age of diabetes onset. RESULTS The T1DM and nondiabetic control (NDC) sibling groups did not differ in whole brain or voxel-wise change over the 2-year follow-up. However, within the T1DM group, participants with more hyperglycemia had a greater decrease in whole brain gray matter compared with those with less hyperglycemia (P < 0.05). Participants who experienced severe hypoglycemia had greater decreases in occipital/parietal white matter volume compared with those with no severe hypoglycemia (P < 0.05) and compared with the NDC sibling group (P < 0.05). CONCLUSIONS These results demonstrate that within diabetes, exposure to hyperglycemia and severe hypoglycemia may result in subtle deviation from normal developmental trajectories of the brain. Diabetes 60:3006-3014, 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据