4.7 Article

Pigment Epithelium-Derived Factor Regulates Lipid Metabolism via Adipose Triglyceride Lipase

期刊

DIABETES
卷 60, 期 5, 页码 1458-1466

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db10-0845

关键词

-

资金

  1. National Health and Medical Research Council (NHMRC) of Australia
  2. Diabetes Australia Research Trust
  3. William Buck land Foundation
  4. Monash Fellowship
  5. Juvenile Diabetes Research Foundation
  6. Austrian Science Fund (FWF) [F 3002, Z 136] Funding Source: researchfish

向作者/读者索取更多资源

OBJECTIVE-Pigment epithelium-derived factor (PEDF) is an adipocyte-secreted factor involved in the development of insulin resistance in obesity. Previous studies have identified PEDF as a regulator of triacylglycerol metabolism in the liver that may act through adipose triglyceride lipase (ATGL). We used ATGL(-/-) mice to determine the role of PEDF in regulating lipid and glucose metabolism. RESEARCH DESIGN AND METHODS Recombinant PEDF was administered to ATGL(-/-) and wild-type mice, and whole-body energy metabolism was studied by indirect calorimety. Adipose tissue lipolysis and skeletal muscle fatty acid metabolism was determined in isolated tissue preparations. Muscle lipids were assessed by electrospray ionization-tandem mass spectrometry. Whole-body insulin sensitivity and skeletal muscle glucose uptake were assessed. RESULTS PEDF-impaired the capacity to adjust substrate selection, resulting in a delayed diurnal decline in the respiratory exchange ratio, and suppressed daily fatty acid oxidation. PEDF enhanced adipocyte lipolysis and triacylglycerol lipase activity in skeletal muscle. Muscle fatty acid uptake and storage were unaffected, whereas fatty acid oxidation was impaired. These changes in lipid metabolism were abrogated in ATGL(-/-) mice and were not attributable to hypothalamic actions. ATGL(-/-) mice were also refractory to PEDF-mediated insulin resistance, but this was not related to changes in lipid species in skeletal muscle. CONCLUSIONS-The results are the first direct demonstration that 1) PEDF influences systemic fatty acid metabolism by promoting lipolysis in an ATGL-dependent manner and reducing fatty acid oxidation and 2) ATGL is required for the negative effects of PEDF on insulin action. Diabetes 60:1458-1466, 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据