4.7 Article

Acute Stimulation of White Adipocyte Respiration by PKA-Induced Lipolysis

期刊

DIABETES
卷 59, 期 10, 页码 2474-2483

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db10-0245

关键词

-

资金

  1. North Carolina Biotechnology Center [CFG-8006]

向作者/读者索取更多资源

OBJECTIVE We examined the effect of beta-adrenergic receptor (beta AR) activation and cAMP-elevating agents on respiration and mitochondrial uncoupling in human adipocytes and probed the underlying molecular mechanisms. RESEARCH DESIGN AND METHODS Oxygen consumption rate (OCR, aerobic respiration) and extracellular acidification rate (ECAR, anaerobic respiration) were examined in response to isoproterenol (ISO), forskolin (FSK), and dibutyryl-cAMP (DB), coupled with measurements of mitochondrial depolarization, lipolysis, kinase activities, and gene targeting or knockdown approaches. RESULTS ISO, FSK, or DB rapidly increased oxidative and glycolytic respiration together with mitochondrial depolarization in human and mouse white adipocytes. The increase in OCR was oligomycin-insensitive and contingent on cAMP-dependent protein kinase A (PKA)-induced lipolysis. This increased respiration and the uncoupling were blocked by inhibiting the mitochondrial permeability transition pore (PTP) and its regulator, BAX. Interestingly, compared with lean individuals, adipocytes from obese subjects exhibited reduced OCR and uncoupling capacity in response to ISO. CONCLUSIONS Lipolysis stimulated by beta AR activation or other maneuvers that increase cAMP levels in white adipocytes acutely induces mitochondrial uncoupling and cellular energetics, which are amplified in the absence of scavenging BSA. The increase in OCR is dependent on PKA-induced lipolysis and is mediated by the PTP and BAX. Because this effect is reduced with obesity, further exploration of this uncoupling mechanism will be needed to determine its cause and consequences. Diabetes 59:2474-2483, 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据