4.7 Article

β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass

期刊

DIABETES
卷 59, 期 9, 页码 2178-2187

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db09-1452

关键词

-

资金

  1. Canadian Diabetes Association
  2. Canadian Institute of Health Research
  3. Genome Quebec Canada
  4. U.S. National Institutes of Health
  5. Fonds de Recherche en Sante du Quebec
  6. Association du Diabete du Quebec
  7. Merck Frosst

向作者/读者索取更多资源

OBJECTIVE-C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about beta-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO-mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced beta-cell mass or function and studied islet metabolism and signaling. RESULTS-HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced beta-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise hi ATP was reduced in both DIO groups, and the glucose-induced rise in Ca(2+) was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS-beta-Cell failure in HDR mice is not due to reduced beta-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca(2+) and lipid signaling, as well as free cholesterol deposition. Diabetes 59:2178-2187, 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据