4.7 Article

Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Upotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB

期刊

DIABETES
卷 58, 期 12, 页码 2851-2862

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db09-0685

关键词

-

资金

  1. European Union [LSHMCT-2006-518153, 036903]
  2. Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State [P6/40]
  3. Fonds National de la Recherche Scientifique
  4. Fonds de la Recherche Scientifique Medicale
  5. Actions de Recherche Concertees de la Communaute Francaise, Belgium

向作者/读者索取更多资源

OBJECTIVE-Chronic exposure of pancreatic beta-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to beta-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of beta-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS-INS-1E or fluorescence-activated cell sorter-purified primary rat beta-cells were exposed to oleate or palmitate with or without the GLP-1 agonist exendin-4 or forskolin. Cyclopiazonic acid was used as a synthetic ER stressor, while the activating transcription factor 4-C/EBP homologous protein branch was selectively activated with salubrinal. The ER stress signaling pathways modulated by GLP-1 agonists were studied by real-time PCR and Western blot. Knockdown by RNA interference was used to identify mediators of the antiapoptotic GLP-1 effects in the ER stress response and downstream mitochondrial cell death mechanisms. RESULTS-Exendin-4 and forskolin protected beta-cells against FFAs via the induction of the ER chaperone BiP mid the antiapoptotic protein JunB that mediate beta-cell survival under lipotoxic conditions. On the other hand, exendin-4 and forskolin protected against synthetic ER stressors by inactivating caspase 12 and upregulating Bcl-2 and X-chromosome-linked inhibitor of apoptosis protein that inhibit mitochondrial apoptosis. CONCLUSIONS-These observations suggest that GLP-1 agonists increase in a context-dependent way the beta-cell defense mechanisms against different pathways involved in ER stress-induced apoptosis. The identification of the pathways modulated by GLP-1 agonists allows for targeted approaches to alleviate beta-cell ER stress in diabetes. Diabetes 58:2851-2862, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据