4.7 Article

(Pro)renin Receptor-Mediated Signal Transduction and Tissue Renin-Angiotensin System Contribute to Diabetes-Induced Retinal Inflammation

期刊

DIABETES
卷 58, 期 7, 页码 1625-1633

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db08-0254

关键词

-

资金

  1. Japanese Ministry of Education, Culture, Sports, Science and Technology [18791296]
  2. Grants-in-Aid for Scientific Research [18791296, 21592243, 21592265] Funding Source: KAKEN

向作者/读者索取更多资源

OBJECTIVE-The term receptor-associated prorenin system (RAPS) refers to the pathogenic mechanisms whereby prorenin binding to its receptor dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling via the receptor. The aim of the present study was to define the association of the RAPS with diabetes-induced retinal inflammation. RESEARCH DESIGN AND METHODS-Long-Evans rats, C57BL/6 mice, and angiotensin II type 1 receptor (AT1-R)deficient mice with streptozotocin-induced diabetes were treated with (pro)renin receptor blocker (PRRB). Retinal mRNA expression of prorenin and the (pro)renin receptor was examined by quantitative RT-PCR. Leukocyte adhesion to the retinal vasculature was evaluated with a concanavatin A lectin perfusion-labeling technique. Retinal protein levels of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule (ICAM)-1 were examined by ELISA. Retinal extracellular signal-regulated kinase (ERK) activation was analyzed by Western blotting. RESULTS-Induction of diabetes led to significant increase in retinal expression of prorenin but not the (pro)renin receptor. Retinal adherent leukocytes were significantly suppressed with PRRB. Administration of PRRB inhibited diabetes-induced retinal expression of VEGF and ICAM-1. To clarify the role of signal transduction via the (pro)renin receptor in the diabetic retina, we used AT1-R-deficient mice in which the RAS was deactivated. Retinal adherent leukocytes in AT1-R-deficient diabetic mice were significantly suppressed with PRRB. PRRB suppressed the activation of ERK and the production of VEGF, but not ICAM-1, in AT1-R-deficient diabetic mice. CONCLUSIONS-These results indicate a significant contribution of the RAPS to the pathogenesis of diabetes-induced retinal inflammation, suggesting the possibility of the (pro)renin receptor as a novel molecular target for the treatment of diabetic retinopathy. Diabetes 58:1625-1633, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据