4.7 Article Proceedings Paper

Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina

期刊

DIABETES
卷 57, 期 8, 页码 2191-2198

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db07-1281

关键词

-

向作者/读者索取更多资源

OBJECTIVE-Pathogenic mechanisms underlying diabetes-induced retinal dysfunction are not fully understood. The aim of the present study was to show the relationship of the renin-angiotensin system (RAS) with the synaptic vesicle protein synaptophysin and neuronal activity in the diabetic retina. RESEARCH DESIGN AND METHODS-C57BL/6 mice with streptozotocin-induced diabetes were treated with the angiotensin II type 1 receptor (AT1R) blocker telimsartan or valsartan, and retinal function was analyzed by electroretinography. Retinal production of the RAS components and phosphorylation of ERK (extracellular-signal regulated kinase) were examined by immunoblotting. Retinal mRNA and protein levels of synaptophysin were measured by quantitative RT-PCR and immunoblot analyses, respectively. In vitro, synaptophysin levels were also evaluated using angiotensin II-stimulated PC12D neuronal cells cultured with or without the inhibition of ERK signaling or the ubiquitin-proteasome system (UPS). RESULTS-Induction of diabetes led to a significant increase in retinal production of angiotensin II and AT1R together with ERK activation in the downstream of AT1R. AT1R blockade significantly reversed diabetes-induced electroretinography changes and reduction of synaptophysin protein, but not mRNA, levels in the diabetic retina. In agreement with the AT1R-mediated post-transcriptional downregulation of synaptophysin in vivo, in vitro application of angiotensin II to PC12D neuronal cells caused the UPS-mediated degradation of synaptophysin protein via AT1R, which proved to be induced by ERK activation. CONCLUSIONS-These data indicate the first molecular evidence of the RAS-induced synaptophysin degradation and neuronal dysfunction in the diabetic retina, suggesting the possibility of the AT1R blockade as a novel neuroprotective treatment for diabetic retinopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据