4.7 Article

Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: A mechanism for the action of berberine to activate AMP-Activated protein kinase and improve insulin action

期刊

DIABETES
卷 57, 期 5, 页码 1414-1418

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db07-1552

关键词

-

向作者/读者索取更多资源

OBJECTIVE-Berberine (BBR) activates AMP-activated protein kinase (AMPK) and improves insulin sensitivity in rodent models of insulin resistance. We investigated the mechanism of activation of AMPK by BBR and explored whether derivatization of BBR could improve its in vivo efficacy. RESEARCH DESIGN AND METHODS-AMPK phosphorylation was examined in L6 myotubes and LYB1(-/-) cells, with or without the Ca2(+)/calmodulin-dependent protein kinase kinase (CAMKK) inhibitor STO-609. Oxygen consumption was measured in L6 myotubes and isolated muscle mitochondria. The effect of a BBR derivative, dihydroberberine (dhBBR), on adiposity and glucose metabolism was examined in rodents fed a high-fat diet. RESULTS-We have made the following novel observations: 1) BBR dose-dependently inhibited respiration in L6 myotubes and muscle mitochondria, through a specific effect on respiratory complex 1, similar to that observed with metforn-tin and rosiglitazone; 2) activation of AMPK by BBR did not rely on the activity of either LKB1 or CAMKK beta, consistent with major regulation at the level of the AMPK phosphatase; and 3) a novel BBR derivative, dhBBR, was identified that displayed improved in vivo efficacy in terms of counteracting increased adiposity, tissue triglyceride accumulation, and insulin resistance in high-fat-fed rodents. This effect is likely due to enhanced oral bioavailability. CONCLUSIONS-Complex I of the respiratory chain represents a major target for compounds that improve whole-body insulin sensitivity through increased AMPK activity. The identification of a novel derivative of BBR with improved in vivo efficacy highlights the potential importance of BBR as a novel therapy for the treatment of type 2 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据