3.8 Review

BACTERIA, YEAST, WORMS, AND FLIES: EXPLOITING SIMPLE MODEL ORGANISMS TO INVESTIGATE HUMAN MITOCHONDRIAL DISEASES

期刊

DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS
卷 16, 期 2, 页码 200-218

出版社

WILEY
DOI: 10.1002/ddrr.114

关键词

Escherichia coli; Saccharomyces cerevisiae; Caenhorabditis elegans; Drosophila melanogaster; mitochondria; model organisms

资金

  1. Ellison Medical Foundation [AG-NS-0519-08]
  2. The National Institutes of Health [K08-DK073545]
  3. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT [R01HD065858] Funding Source: NIH RePORTER
  4. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH &HUMAN DEVELOPMENT [K08HD044808] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [K08DK073545] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multicellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems. (C) 2010 Wiley-Liss, Inc. Dev Disabil Res Rev 2010;16:200-218.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据