4.7 Article

The Purkinje Neuron Acts as a Central Regulator of Spatially and Functionally Distinct Cerebellar Precursors

期刊

DEVELOPMENTAL CELL
卷 27, 期 3, 页码 278-292

出版社

CELL PRESS
DOI: 10.1016/j.devcel.2013.10.008

关键词

-

资金

  1. Vanderbilt-Ingram Cancer Center [P30 CA068485]
  2. National Institutes of Health [NS 042205]

向作者/读者索取更多资源

The prospective white matter (PWM) in the nascent cerebellum contains a transient germinal compartment that produces all postnatally born GABAergic inhibitory interneurons and astrocytes. However, little is known about the molecular identity and developmental potential of resident progenitors or key regulatory niche signals. Here, we show that neural stem-cell-like primary progenitors (Tnc(YFP-low) CD133(+)) generate intermediate astrocyte (Tnc(YFP-low) CD15(+)) precursors and GABAergic transient amplifying (Ptf1a(+)) cells. Interestingly, these lineally related but functionally divergent progenitors commonly respond to Sonic hedgehog (Shh), and blockade of reception in TNCYFP-low cells attenuates proliferation in the PWM, reducing both intermediate progenitor classes. Furthermore, we show that Shh produced from distant Purkinje neurons maintains the PWM niche independently of its classical role in regulating granule cell precursor proliferation. Our results indicate that Purkinje neurons maintain a bidirectional signaling axis, driving the production of spatially and functionally opposed inhibitory and excitatory interneurons important for motor learning and cognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据