4.4 Article

Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability

期刊

DEVELOPMENTAL BIOLOGY
卷 373, 期 1, 页码 176-183

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2012.10.022

关键词

Otx2; Neuronal identity; Dopaminergic progenitors; Ventral tegmental area; Substantia nigra; En1

资金

  1. FP6 project for the EUTRACC Integrated Project [LSHG-CT-2007-037445]
  2. European Union [mdDANEURODEV FP7-Health-2007-B-222999]
  3. Italian Association for Cancer Research (AIRC) [IG-5499]
  4. Regione Campania [L.R.n.5]
  5. Federal Ministry of Education and Research (BMBF) Neurogenese aus Gehirn- und Hautzellen [FKZ 01GN1009C]

向作者/读者索取更多资源

Understanding the molecular basis underlying the neurogenesis of mesencephalic-diencephalic Dopaminergic (mdDA) neurons is a major task fueled by their relevance in controlling locomotor activity and emotion and their involvement in neurodegenerative and psychiatric diseases. Increasing evidence suggests that mdDA neurons of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) represent two main distinct neuronal populations, which, in turn, include specific neuronal subsets. Relevant studies provided important results on mdDA neurogenesis, but, nevertheless, have not yet clarified how the identity of mdDA neuronal subtypes is established and, in particular, whether neurogenic factors may direct progenitors towards the differentiation of specific mdDA neuronal subclasses. The transcription factor Otx2 is required for the neurogenesis of mesencephalic DA (mesDA) neurons and to control neuron subtype identity and sensitivity to the MPTP neurotoxin in the adult VTA. Here we studied whether Otx2 is required in mdDA progenitors for the generation of specific mdDA neuronal subtypes. We found that although expressed in virtually all mdDA progenitors, Otx2 is required selectively for the differentiation of VTA neuronal subtypes expressing Ahd2 and/or Calb but not for those co-expressing Girk2 and glyco-Dat. Moreover, mild over-expression of Otx2 in SNpc progenitors and neurons is sufficient to rescue En! haploinsufficiency-dependent defects, such as progressive loss and increased MPTP sensitivity of SNpc neurons. Collectively, these data suggest that mdDA progenitors exhibit differential sensitivity to Otx2, which selectively influences the generation of a large and specific subset of VTA neurons. In addition, these data suggest that Otx2 and En1 may share similar properties and control survival and vulnerability to MPTP neurotoxin respectively in VTA and SNpc. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据