4.4 Article

Pushing the envelope of retinal ganglion cell genesis: Context dependent function of Math5 (Atoh7)

期刊

DEVELOPMENTAL BIOLOGY
卷 368, 期 2, 页码 214-230

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2012.05.005

关键词

Retinal ganglion cell (RGC); Math5; Atoh7; Optic nerve; Basic helix-loop-helix (bHLH); Crx; Cell fate specification; Cone-rod homeodomain; Atonal; BAC transgene; Retinal explants; Axon pathfinding; Heterochronic; Transgene rescue

资金

  1. National Institutes of Health (NIH) [EY14259, EY13934, GM07863]

向作者/读者索取更多资源

The basic-helix-loop helix factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) development. However, only 10% of Math5-expressing cells adopt the RGC fate, and most become photoreceptors. In principle, Math5 may actively bias progenitors towards RGC fate or passively confer competence to respond to instructive factors. To distinguish these mechanisms, we misexpressed Math5 in a wide population of precursors using a Crx BAC or 2.4 kb promoter, and followed cell fates with Cre recombinase. In mice, the Crx cone-rod homeobox gene and Math5 are expressed shortly after cell cycle exit, in temporally distinct, but overlapping populations of neurogenic cells that give rise to 85% and 3% of the adult retina, respectively. The Crx > Math5 transgenes did not stimulate RGC fate or alter the timing of RGC births. Likewise, retroviral Math5 overexpression in retinal explants did not bias progenitors towards the RGC fate or induce cell cycle exit. The Crx > Math5 transgene did reduce the abundance of early-born (E15.5) photoreceptors two-fold, suggesting a limited cell fate shift. Nonetheless, retinal histology was grossly normal, despite widespread persistent Math5 expression. In an RGC-deficient (Math5 knockout) environment, Crx > Math5 partially rescued RGC and optic nerve development, but the temporal envelope of RGC births was not extended. The number of early-born RGCs (before E13) remained very low, and this was correlated with axon pathfinding defects and cell death. Together, these results suggest that Math5 is not sufficient to stimulate RGC fate. Our findings highlight the robust homeostatic mechanisms, and role of pioneering neurons in RGC development. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据