4.4 Article

Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs

期刊

DEVELOPMENTAL BIOLOGY
卷 340, 期 2, 页码 355-368

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2010.01.019

关键词

Signaling networks; Evolution; Enamel; Incisor; Stem cells; miRNA; Crown; Molar

资金

  1. Fondation Recherche Medicale (FRM)
  2. EU
  3. Sigrid Juselius Foundation
  4. Academy of Finland

向作者/读者索取更多资源

Teeth form as appendages of the ectoderm and their morphogenesis is regulated by tissue interactions mediated by networks of conserved signal pathways. Micro-RNA (miRNA) pathway has emerged as important regulator of various aspects of embryonic development, but its function in odontogenesis has not been elucidated. We show that the expression of RNAi pathway effectors is dynamic during tooth morphogenesis and differentiation of dental cells. Based on microarray profiling we selected 8 miRNAs expressed during morphogenesis and 7 miRNAs in the incisor cervical loop containing the stem cell niche. These miRNAs were mainly expressed in the dental epithelium. Conditional deletion of Dicer-1 in the epithelium (Dcr(K14-/-)) resulted in rather mild but significant aberrations in tooth shape and enamel formation. The cusp patterns of the Dcr(K14-/-) molar crowns resembled the patterns of both ancestral muroid rodents and mouse mutants with modulated signal pathways. In the Dcr(K14-/-) incisors, longitudinal grooves formed on the labial surface and these were shown to result from ectopic budding of the progenitor epithelium in the cervical loop. In addition, ameloblast differentiation was impaired and resulted in deficient enamel formation in molars and incisors. To help the identification of candidate target genes of the selected tooth enriched miRNAs, we constructed a new ectodermal organ oriented database, miRTooth. The predicted targets of the selected miRNAs included several components of the main morphogenetic signal pathways regulating tooth development. Based on our findings we suggest that miRNAs modulate tooth morphogenesis largely by fine tuning conserved signaling networks and that miRNAs may have played important roles during tooth evolution. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据