4.4 Article

Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation

期刊

DEVELOPMENTAL BIOLOGY
卷 319, 期 2, 页码 370-383

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2008.04.032

关键词

ERK1; ERK2; MAPK; cell migration; epiboly; gastrulation; development

向作者/读者索取更多资源

The MAPKs are key regulatory signaling molecules in many cellular processes. Here we define differential functions for ERK1 and ERK2 MAPKs in zebrafish embryogenesis. Morpholino knockdown of ERK1 and ERK2 resulted in cell migration defects during gastrulation, which could be rescued by co-injection of the corresponding mRNA. Strikingly, Erk2 mRNA cross-rescued ERK1 knockdown, but erk1 mRNA was unable to compensate for ERK2 knockdown. Cell-tracing experiments revealed a convergence defect for ERK1 morphants without a severe posterior-extension defect, whereas ERK2 morphants showed a more severe reduction in anterior-posterior extension. These defects were primary changes in gastrulation cell movements and not caused by altered cell fate specification. Saturating knockdown conditions showed that the absence of FGF-mediated dual-phosphorylated ERK2 from the blastula margin blocked initiation of epiboly, actin and tubulin cytoskeleton reorganization processes and further arrested embryogenesis, whereas ERK1 knockdown had only a mild effect on epiboly progression. Together, our data define distinct roles for ERK1 and ERK2 in developmental cell migration processes during zebrafish embryogenesis. (c) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据