4.6 Article

Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta

期刊

DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY
卷 34, 期 6, 页码 638-647

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2010.01.008

关键词

Insect immunity; Antimicrobial peptide; Convertase; Variable repeats; Hemolymph protein

资金

  1. National Institutes of Health [GM58634, AI31084]
  2. National Science Foundation [0722494]
  3. [OKL02450]
  4. Div Of Biological Infrastructure
  5. Direct For Biological Sciences [0722494] Funding Source: National Science Foundation

向作者/读者索取更多资源

Antimicrobial peptides (AMPs) are a crucial component of the natural immune system in insects. Five types of AMPs have been identified in the tobacco hornworm Manduca sexta, including attacin, cecropin, moricin, gloverin, and lebocin. Here we report the isolation of lebocin-related cDNA clones and antibacterial activity of their processed protein products. The 17 cDNA sequences are composed of a constant 5' end and a variable 3' region containing 3-16 copies of an 81-nucleotide repeat. The sequence of the corresponding gene isolated from a M. sexta genomic library and Southern blotting results indicated that the gene lacks introns and exists as a single copy in the genome. The genomic sequence contained 13 complete and one partial copy of the 81-nucleotide repeat. Northern blot analysis revealed multiple transcripts with major size differences. The mRNA level of M. sexta lebocin increased substantially in fat body after larvae had been injected with bacteria. The RXXR motifs in the protein sequences led us to postulate that the precursors are processed by an intracellular convertase to form four bioactive peptides. To test this hypothesis, we chemically synthesized the peptides and examined their antibacterial activity. Peptide 1 killed Gram-positive and Gram-negative bacteria. Peptide 2, similar in sequence to a Galleria mellonella AMP, did not affect the bacterial growth. Peptide 3 was inactive but peptide 3 with an extra Arg at the carboxyl terminus was active against Escherichia coli at a high minimum inhibitory concentration. Peptide 4, encoded by the 81-bp repeat, was inactive in the antibacterial tests. The hypothesis that posttranslational processing of the precursor proteins produces multiple bioactive peptides for defense purposes was validated by identification of peptides 1,2, and 3 from larval hemolymph via liquid chromatography and tandem mass spectrometry. Comparison with the orthologs from other lepidopteran insects indicates that the same mechanism may be used to generate several functional products from a single precursor. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据