4.1 Article

Regulation of later neurogenic stages of adult-derived neural stem/progenitor cells by L-type Ca2+ channels

期刊

DEVELOPMENT GROWTH & DIFFERENTIATION
卷 56, 期 8, 页码 583-594

出版社

WILEY
DOI: 10.1111/dgd.12158

关键词

death; survival; differentiation; L-type Ca2+ channel; neural stem cell; neurogenesis

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [25115701]
  2. Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO)
  3. Grants-in-Aid for Scientific Research [25115701] Funding Source: KAKEN

向作者/读者索取更多资源

In the adult hippocampus, new neurons are continuously generated and incorporated into the local circuitry in a manner dependent on the network activity. Depolarization evoked by neurotransmitters has been assumed to activate L-type Ca2+ channels (LTCC) which regulate the intracellular Ca2+-dependent signaling cascades. The process of neurogenesis contains several stages such as proliferation, fate determination, selective death/survival and maturation. Here, we investigated which stage of neurogenesis is under the regulation of LTCC using a clonal line of neural stem/progenitor cells, PZ5, which was derived from adult rat hippocampus. Although undifferentiated PZ5 cells were type 1-like cells expressing both nestin and glial fibrillary acidic protein, they generated neuronal, astrocytic and oligodendrocytic populations in differentiation medium containing retinoic acid. Proliferation of undifferentiated PZ5 cells was dependent on neither the LTCC antagonist, nimodipine (Nimo) nor the LTCC agonists, Bay K 8644 (BayK) or FPL 64176 (FPL), whereas the fraction of neuronal population that expressed both III-tubulin and MAP2 was reduced by Nimo but increased by BayK or FPL. At an earlier period of differentiation (e.g. day 4), the fraction of PZ5 cells expressing HuC/D, pan-neuronal marker, was not affected either by the LTCC activation or inhibition. At a later period of differentiation (e.g. day 9), the fraction of dying neurons was decreased by LTCC activation and increased by LTCC inhibition. It is suggested that the LTCC activation facilitates the survival and maturation of immature neurons, and that its inhibition facilitates the neuronal death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据