4.7 Article

Characterization of the ventricular-subventricular stem cell niche during human brain development

期刊

DEVELOPMENT
卷 145, 期 20, 页码 -

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.170100

关键词

Stem cell niche; Human brain development; Ependymogenesis; Ventricular-subventricular zone

资金

  1. National Institutes of Health [NS090092, NS098091, S10ODO16435]
  2. Hydrocephalus Association
  3. University of Connecticut Institute for Brain and Cognitive Sciences

向作者/读者索取更多资源

Human brain development proceeds via a sequentially transforming stem cell population in the ventricular-subventricular zone (V-SVZ). An essential, but understudied, contributor to V-SVZ stem cell niche health is the multi-ciliated ependymal epithelium, which replaces stem cells at the ventricular surface during development. However, reorganization of the V-SVZ stem cell niche and its relationship to ependymogenesis has not been characterized in the human brain. Based on comprehensive comparative spatiotemporal analyses of cytoarchitectural changes along the mouse and human ventricle surface, we uncovered a distinctive stem cell retention pattern in humans as ependymal cells populate the surface of the ventricle in an occipital-to-frontal wave. During perinatal development, ventricle-contacting stem cells are reduced. By 7 months few stem cells are detected, paralleling the decline in neurogenesis. In adolescence and adulthood, stem cells and neurogenesis are not observed along the lateral wall. Volume, surface area and curvature of the lateral ventricles all significantly change during fetal development but stabilize after 1 year, corresponding with the wave of ependymogenesis and stem cell reduction. These findings reveal normal human V-SVZ development, highlighting the consequences of disease pathologies such as congenital hydrocephalus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据