4.7 Article

Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis

期刊

DEVELOPMENT
卷 145, 期 19, 页码 -

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.165688

关键词

Sterols; VA-TIRFM; FLS2; Spatiotemporal dynamics; Endocytosis; Plant immunity

资金

  1. National Natural Science Foundation of China [31530084, 31622005, 31670182]
  2. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, the Program of Introducing Talents of Discipline to Universities (111 project) [B13007]

向作者/读者索取更多资源

The plant transmembrane receptor kinase FLAGELLIN SENSING 2 (FLS2) is crucial for innate immunity. Although previous studies have reported FLS2-mediated signal transduction and endocytosis via the clathrin-mediated pathway, whether additional endocytic pathways affect FLS2-mediated defense responses remains unclear. Here, we show that the Arabidopsis thaliana sterol-deficient mutant steroid methyltransferase 1 displays defects in immune responses induced by the flagellin-derived peptide flg22. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) coupled with single-particle tracking showed that the spatiotemporal dynamics of FLS2-GFP changed on a millisecond time scale and that the FLS2-GFP dwell time at the plasma membrane increased in cells treated with a sterol-extracting reagent when compared with untreated counterparts. We further demonstrate that flg22-induced FLS2 clustering and endocytosis involves the sterol-associated endocytic pathway, which is distinct from the clathrin-mediated pathway. Moreover, flg22 enhanced the colocalization of FLS2-GFP with the membrane microdomain marker Flot 1-mCherry and FLS2 endocytosis via the sterol-associated pathway. This indicates that plants may respond to pathogen attacks by regulating two different endocytic pathways. Taken together, our results suggest the key role of sterol homeostasis in flg22-induced plant defense responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据