4.7 Article

Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal

期刊

DEVELOPMENT
卷 141, 期 20, 页码 3889-3899

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.110213

关键词

Epidermal sensory neuron; Nodal; BMP

向作者/读者索取更多资源

The neural crest and neurogenic placodes are thought to be a vertebrate innovation that gives rise to much of the peripheral nervous system (PNS). Despite their importance for understanding chordate evolution and vertebrate origins, little is known about the evolutionary origin of these structures. Here, we investigated the mechanisms underlying the development of ascidian trunk epidermal sensory neurons (ESNs), which are thought to function as mechanosensory neurons in the rostral-dorsal trunk epidermis. We found that trunk ESNs are derived from the anterior and lateral neural plate border, as is the case in the vertebrate PNS. Pharmacological experiments indicated that intermediate levels of bone morphogenetic protein (BMP) signal induce formation of ESNs from anterior ectodermal cells. Gene knockdown experiments demonstrated that HrBMPa (60A-subclass BMP) and HrBMPb (dpp-subclass BMP) act to induce trunk ESNs at the tailbud stage and that anterior trunk ESN specification requires Chordin-mediated antagonism of the BMP signal, but posterior trunk ESN specification does not. We also found that Nodal functions as a neural plate border inducer in ascidians. Nodal signaling regulates expression of HrBMPs and HrChordin in the lateral neural plate, and consequently specifies trunk ESNs. Collectively, these findings show that BMP signaling that is regulated spatiotemporally by Nodal signaling is required for trunk ESN specification, which clearly differs from the BMP gradient model proposed for vertebrate neural induction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据