4.7 Review

Bioengineering approaches to guide stem cell-based organogenesis

期刊

DEVELOPMENT
卷 141, 期 9, 页码 1794-1804

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.101048

关键词

3D culture; Bioengineering; Biomaterials; Organoid; Stem cell

资金

  1. European Molecular Biology Organization Long-Term Postdoctoral Fellowship
  2. European Research Council
  3. EU

向作者/读者索取更多资源

During organogenesis, various molecular and physical signals are orchestrated in space and time to sculpt multiple cell types into functional tissues and organs. The complex and dynamic nature of the process has hindered studies aimed at delineating morphogenetic mechanisms in vivo, particularly in mammals. Recent demonstrations of stem cell-driven tissue assembly in culture offer a powerful new tool for modeling and dissecting organogenesis. However, despite the highly organotypic nature of stem cell-derived tissues, substantial differences set them apart from their in vivo counterparts, probably owing to the altered microenvironment in which they reside and the lack of mesenchymal influences. Advances in the biomaterials and microtechnology fields have, for example, afforded a high degree of spatiotemporal control over the cellular microenvironment, making it possible to interrogate the effects of individual microenvironmental components in a modular fashion and rapidly identify organ-specific synthetic culture models. Hence, bioengineering approaches promise to bridge the gap between stem cell-driven tissue formation in culture and morphogenesis in vivo, offering mechanistic insight into organogenesis and unveiling powerful new models for drug discovery, as well as strategies for tissue regeneration in the clinic. We draw on several examples of stem cell-derived organoids to illustrate how bioengineering can contribute to tissue formation ex vivo. We also discuss the challenges that lie ahead and potential ways to overcome them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据