4.7 Article

Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo

期刊

DEVELOPMENT
卷 141, 期 14, 页码 2813-2824

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.107276

关键词

YAP (Yes-associated protein); Asymmetric division; Cell sorting; 16-cell stage; Inner cell mass (ICM); Trophectoderm (TE); Live imaging; Mouse

资金

  1. Canada Foundation for Innovation [LOI25576]
  2. Canadian Institutes of Health Research [MOP111197, MOP107518]

向作者/读者索取更多资源

In the mouse embryo, asymmetric divisions during the 8-16 cell division generate two cell types, polar and apolar cells, that are allocated to outer and inner positions, respectively. This outer/inner configuration is the first sign of the formation of the first two cell lineages: trophectoderm (TE) and inner cell mass (ICM). Outer polar cells become TE and give rise to the placenta, whereas inner apolar cells become ICM and give rise to the embryo proper and yolk sac. Here, we analyze the frequency of asymmetric divisions during the 8-16 cell division and assess the relationships between cell polarity, cell and nuclear position, and Hippo signaling activation, the pathway that initiates lineage-specific gene expression in 16-cell embryos. Although the frequency of asymmetric divisions varied in each embryo, we found that more than six blastomeres divided asymmetrically in most embryos. Interestingly, many apolar cells in 16-cell embryos were located at outer positions, whereas only one or two apolar cells were located at inner positions. Live imaging analysis showed that outer apolar cells were eventually internalized by surrounding polar cells. Using isolated 8-cell blastomeres, we carefully analyzed the internalization process of apolar cells and found indications of higher cortical tension in apolar cells than in polar cells. Last, we found that apolar cells activate Hippo signaling prior to taking inner positions. Our results suggest that polar and apolar cells have intrinsic differences that establish outer/inner configuration and differentially regulate Hippo signaling to activate lineage-specific gene expression programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据