4.7 Article

Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models

期刊

DEVELOPMENT
卷 140, 期 8, 页码 1720-1729

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.092304

关键词

Angiogenesis; Arteriogenesis; Vessel branching; Dll4-Notch signaling; Mouse

资金

  1. Helmholtz Association
  2. Center for Stroke Research Berlin (FLN), Inserm
  3. Fondation Bettencourt
  4. Leducq Foundation - Artemis Transatlantic network
  5. Fondation pour la Recherche medicale (FRM)
  6. Fondation Leducq

向作者/读者索取更多资源

Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据