4.7 Article

Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration

期刊

DEVELOPMENT
卷 140, 期 7, 页码 1402-1411

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.087346

关键词

Caudal fin; Regeneration; Blastema; Proliferation; Differentiation; Notch

资金

  1. Spanish Ministry of Economy and Competitiveness (MINECO) [SAF2010-17555]
  2. Red Tematica de Investigacion Cooperativa en Enfermedades Cardiovasculares (RECAVA) [RD06/0014/0038]
  3. Red de Terapia Celular (TERCEL) [RD06/0010/1013]
  4. European Union [EU FP7-ITN 215761]
  5. MINECO
  6. Pro-CNIC Foundation

向作者/读者索取更多资源

Zebrafish have the capacity to regenerate several organs, including the heart and fins. Fin regeneration is epimorphic, involving the formation at the amputation plane of a mass of undifferentiated, proliferating mesenchymal progenitor-like cells, called blastema. This tissue provides all the cell types that form the fin, so that after damage or amputation the fin pattern and structure are fully restored. How blastema cells remain in this progenitor-like state is poorly understood. Here, we show that the Notch pathway plays an essential role during fin regeneration. Notch signalling is activated during blastema formation and remains active throughout the regeneration process. Chemical inhibition or morpholino-mediated knockdown of Notch signalling impairs fin regeneration via decreased proliferation accompanied by reduced expression of Notch target genes in the blastema. Conversely, overexpression of a constitutively active form of the Notch1 receptor (N1ICD) in the regenerating fin leads to increased proliferation and to the expansion of the blastema cell markers msxe and msxb, as well as increased expression of the proliferation regulator aldh1a2. This blastema expansion prevents regenerative fin outgrowth, as indicated by the reduction in differentiating osteoblasts and the inhibition of bone regeneration. We conclude that Notch signalling maintains blastema cells in a plastic, undifferentiated and proliferative state, an essential requirement for fin regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据