4.7 Article

MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration

期刊

DEVELOPMENT
卷 140, 期 1, 页码 31-42

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.081851

关键词

MEF2; Muscle regeneration; miRNA; Mouse

资金

  1. National Institutes of Health National Heart, Lung, and Blood Institute [HL73304]

向作者/读者索取更多资源

Understanding the molecular mechanisms of skeletal muscle regeneration is crucial to exploiting this pathway for use in tissue repair. Our data demonstrate that the MEF2A transcription factor plays an essential role in skeletal muscle regeneration in adult mice. Injured Mef2a knockout mice display widespread necrosis and impaired myofiber formation. MEF2A controls this process through its direct regulation of the largest known mammalian microRNA (miRNA) cluster, the Gtl2-Dio3 locus. A subset of the Gtl2-Dio3 miRNAs represses secreted Frizzled-related proteins (sFRPs), inhibitors of WNT signaling. Consistent with these data, Gtl2-Dio3-encoded miRNAs are downregulated in regenerating Mef2a knockout muscle, resulting in upregulated sFRP expression and attenuated WNT activity. Furthermore, myogenic differentiation in Mef2a-deficient myoblasts is rescued by overexpression of miR-410 and miR-433, two miRNAs in the Gtl2-Dio3 locus that repress sFRP2, or by treatment with recombinant WNT3A and WNT5A. Thus, miRNA-mediated modulation of WNT signaling by MEF2A is a requisite step for proper muscle regeneration, and represents an attractive pathway for enhancing regeneration of diseased muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据