4.7 Article

Mesoderm migration in Drosophila is a multi-step process requiring FGF signaling and integrin activity

期刊

DEVELOPMENT
卷 137, 期 13, 页码 2167-2175

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.051573

关键词

Fibroblast growth factors; Cell migration; Intercalation; In vivo imaging

资金

  1. NIH [R01 GM078542]
  2. Jane Coffin Childs Memorial Fund for Medical Research

向作者/读者索取更多资源

Migration is a complex, dynamic process that has largely been studied using qualitative or static approaches. As technology has improved, we can now take quantitative approaches towards understanding cell migration using in vivo imaging and tracking analyses. In this manner, we have established a four-step model of mesoderm migration during Drosophila gastrulation: (I) mesodermal tube formation, (II) collapse of the mesoderm, (III) dorsal migration and spreading and (IV) monolayer formation. Our data provide evidence that these steps are temporally distinct and that each might require different chemical inputs. To support this, we analyzed the role of fibroblast growth factor (FGF) signaling, in particular the function of two Drosophila FGF ligands, Pyramus and Thisbe, during mesoderm migration. We determined that FGF signaling through both ligands controls movements in the radial direction. Thisbe is required for the initial collapse of the mesoderm onto the ectoderm, whereas both Pyramus and Thisbe are required for monolayer formation. In addition, we uncovered that the GTPase Rap1 regulates radial movement of cells and localization of the beta-integrin subunit, Myospheroid, which is also required for monolayer formation. Our analyses suggest that distinct signals influence particular movements, as we found that FGF signaling is involved in controlling collapse and monolayer formation but not dorsal movement, whereas integrins are required to support monolayer formation only and not earlier movements. Our work demonstrates that complex cell migration is not necessarily a fluid process, but suggests instead that different types of movements are directed by distinct inputs in a stepwise manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据