4.7 Article

The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves

期刊

DEVELOPMENT
卷 136, 期 5, 页码 823-832

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.031625

关键词

CUC2; NAM; Boundary; Compound leaves; miR164; Tomato

资金

  1. BARD [IS-3453-03, IS0414008C]
  2. Israel Science Foundation [689/05, 616/06]
  3. BSF [2000109]
  4. Israel Ministry of Agriculture [837-0010-06]

向作者/读者索取更多资源

Leaves are formed at the flanks of the shoot apical meristem (SAM) and develop into a variety of forms. In tomato, prolonged leaf patterning enables the elaboration of compound leaves by reiterative initiation of leaflets with lobed margins. In goblet (gob) loss-of-function mutants, primary leaflets are often fused, secondary leaflets and marginal serrations are absent, and SAMs often terminate precociously. We show that GOB encodes a NAC-domain transcription factor expressed in narrow stripes at the leaf margins, flanking the distal side of future leaflet primordia, and at the boundaries between the SAM and leaf primordia. Leaf-specific overexpression of the microRNA miR164, a negative regulator of GOB-like genes, also leads to loss of secondary-leaflet initiation and to smooth leaflet margins. Plants carrying a dominant gob allele with an intact ORF but disrupted miR164 binding site produce more cotyledons and floral organs, have split SAMs and, surprisingly, simpler leaves. Overexpression of a form of GOB with an altered miR164 binding site in leaf primordia leads to delayed leaflet maturation, frequent, improperly timed and spaced initiation events, and a simple mature leaflet form owing to secondary-leaflet fusion. miR164 also affects leaflet separation in Cardamine hirsuta, a Brassicaceae species with complex leaves. Genetic and molecular analyses suggest that GOB expression is intact in the simplified leaves of entire tomato mutants, which have a defect in a putative repressor of auxin responses. Our results show that GOB marks leaflet boundaries and that its accurate spatial, temporal and quantitative activity affects leaf elaboration in a context-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据