4.7 Article

Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities

期刊

DEVELOPMENT
卷 136, 期 4, 页码 585-594

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.027748

关键词

Sall; Townes-Brocks syndrome; Hox; Limb development; Shh; Eph; Mouse

资金

  1. Harold and Leila Y. Mathers Charitable Foundation,
  2. Fundacion Cellex
  3. MEC
  4. Marato
  5. Ministry of Education, Culture, Sports, Science and Technology, Japan
  6. Canadian Health Research Institute

向作者/读者索取更多资源

The genetic mechanisms that regulate the complex morphogenesis of generating cartilage elements in correct positions with precise shapes during organogenesis, fundamental issues in developmental biology, are still not well understood. By focusing on the developing mouse limb, we confirm the importance of transcription factors encoded by the Sall gene family in proper limb morphogenesis, and further show that they have overlapping activities in regulating regional morphogenesis in the autopod. Sall1/Sall3 double null mutants exhibit a loss of digit1 as well as a loss or fusion of digit2 and digit3, metacarpals and carpals in the autopod. We show that Sall activity affects different pathways, including the Shh signaling pathway, as well as the Hox network. Shh signaling in the mesenchyme is partially impaired in the Sall mutant limbs. Additionally, our data suggest an antagonism between Sall1-Sall3 and Hoxa13-Hoxd13. We demonstrate that expression of Epha3 and Epha4 is downregulated in the Sall1/Sall3 double null mutants, and, conversely, is upregulated in Hoxa13 and Hoxd13 mutants. Moreover, the expression of Sall1 and Sall3 is upregulated in Hoxa13 and Hoxd13 mutants. Furthermore, by using DNA-binding assays, we show that Sall and Hox compete for a target sequence in the Epha4 upstream region. In conjunction with the Shh pathway, the antagonistic interaction between Hoxa13-Hoxd13 and Sall1-Sall3 in the developing limb may contribute to the fine-tuning of local Hox activity that leads to proper morphogenesis of each cartilage element of the vertebrate autopod.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据