4.7 Article

High-speed imaging of developing heart valves reveals interplay of morphogenesis and function

期刊

DEVELOPMENT
卷 135, 期 6, 页码 1179-1187

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.010694

关键词

cardiovascular development; Cox2 (Ptgs2); microscopy; prostaglandins; SPIM; zebrafish

向作者/读者索取更多资源

Knowing how mutations disrupt the interplay between atrioventricular valve (AVV) morphogenesis and function is crucial for understanding how congenital valve defects arise. Here, we use high-speed fluorescence microscopy to investigate AVV morphogenesis in zebrafish at cellular resolution. We find that valve leaflets form directly through a process of invagination, rather than first forming endocardial cushions. There are three phases of valve function in embryonic development. First, the atrioventricular canal (AVC) is closed by the mechanical action of the myocardium, rolls together and then relaxes. The growing valve leaflets serve to block the canal during the roll and, depending on the developmental stage, either expand or hang down as a leaflet to block the canal. These steps are disrupted by the subtle morphological changes that result from inhibiting ErbB-, TGF beta- or Cox2 (Ptgs2)-dependent signaling. Cox2 inhibition affects valve development due to its effect on myocardial cell size and shape, which changes the morphology of the ventricle and alters valve geometry. Thus, different signaling pathways regulate distinct aspects of the behavior of individual cells during valve morphogenesis, thereby influencing specific facets of valve function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据