4.7 Article

The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci

期刊

DEVELOPMENT
卷 135, 期 11, 页码 1991-1999

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.016873

关键词

epidermis; pattern formation; trichome; gene regulation; cell differentiation; leaf; Arabidopsis thaliana; cell fate; transcription; TTG1

向作者/读者索取更多资源

A network of three classes of proteins consisting of bHLH and MYB transcription factors, and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), act in concert to activate trichome initiation and patterning. Using YFP-TTG1 translational fusions, we show that TTG1 is expressed ubiquitously in Arabidopsis leaves and is preferentially localized in the nuclei of trichomes at all developmental stages. Using a conditional transgenic allele, we demonstrate that TTG1 directly targets the same genes as the bHLH protein GLABRA3 (GL3). In vivo binding of the R2R3-MYB protein GLABRA1 (GL1) to the promoters of GLABRA2 (GL2), TRANSPARENT TESTA GLABRA2 (TTG2), CAPRICE (CPC) and ENHANCER OF TRIPTYCHON AND CAPRICE1 (ETC1) establishes that these genes are major transcriptional targets for the TTG1-bHLH-MYB regulatory complex. By co-precipitation, we confirm that TTG1 associates with GL3 and GL1 in vivo, forming a complex. The loss of TTG1 and GL1 through mutation, affects the subcellular distribution of GL3. Using particle bombardment, we show that TTG1, GL3, GL1 and the homeodomain protein GL2 do not move between adjacent epidermal cells, while the R3-MYB, CPC, does move to neighboring cells. These data support a model for the TTG1 complex directly regulating activators and repressors and the movement of repressors to affect trichome patterning on the Arabidopsis leaf.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据