4.7 Article

Zeb1 links epithelial-mesenchymal transition and cellular senescence

期刊

DEVELOPMENT
卷 135, 期 3, 页码 579-588

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.007047

关键词

Zeb1; epithelial-mesenchymal transition; senescence; transcription

资金

  1. NCRR NIH HHS [RR018733, P20 RR018733] Funding Source: Medline
  2. NEI NIH HHS [R21 EY017869, EY015636, R21 EY017869-02, R21 EY017869-01A1, R24 EY015636] Funding Source: Medline

向作者/读者索取更多资源

Overexpression of zinc finger E-box binding homeobox transcription factor 1 (Zeb1) in cancer leads to epithelial-to-mesenchymal transition (EMT) and increased metastasis. As opposed to overexpression, we show that mutation of Zeb1 in mice causes a mesenchymal-epithelial transition in gene expression characterized by ectopic expression of epithelial genes such as E-cadherin and loss of expression of mesenchymal genes such as vimentin. In contrast to rapid proliferation in cancer cells where Zeb1 is overexpressed, this mesenchymal-epithelial transition in mutant mice is associated with diminished proliferation of progenitor cells at sites of developmental defects, including the forming palate, skeleton and CNS. Zeb1 dosage-dependent deregulation of epithelial and mesenchymal genes extends to mouse embryonic fibroblasts (MEFs), and mutant MEFs also display diminished replicative capacity in culture, leading to premature senescence. Replicative senescence in MEFs is classically triggered by products of the Ink4a (Cdkn2a) gene. However, this Ink4a pathway is not activated during senescence of Zeb1 mutant MEFs. Instead, there ectopic expression of two other cell cycle inhibitory cyclin-dependent kinase inhibitors, p15Ink4b (Cdkn2b) and p21Cdkn1a (Cdkn1a). We demonstrate that this ectopic expression of p15Ink4b extends in vivo to sites of diminished progenitor cell proliferation and developmental defects in Zeb1-null mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据