4.7 Article

Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes

期刊

DESALINATION
卷 309, 期 -, 页码 18-26

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2012.09.025

关键词

Polyimide; Reverse osmosis membrane; Chlorine stability

资金

  1. National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2012-0003751]

向作者/读者索取更多资源

Chlorine-resistant polyimide thin film composite (TFC) RO membranes were prepared via interfacial polymerization of m-phenylene diamine (MPD) and 1,2,4,5-benzene tetracarbonyl chloride (BTC) and subsequent thermal imidization. Thermogravimetric analysis, differential scanning calorimetry and attenuated total reflection-Fourier transform infrared spectroscopy confirmed that the use of a tertiary amine catalyst allowed the preparation of the polyimide films at below the glass transition temperature of the polysulfone support sublayer, thus preventing its degradation. The effects of annealing on the membranes performance were investigated. Increasing temperature and duration during the thermal treatment accelerated the imidization of the poly(amic acid) membranes and converted their amorphous structures to semi-crystalline structures, deteriorating their performance. The addition of a cross-linking agent, trimesoyl chloride (TMC), during the interfacial polymerization improved the membrane's performance. The polyimide thin film composite, reverse osmosis membranes prepared from MPD, BTC and TMC showed significantly enhanced chlorine resistance due to the elimination of chlorine-sensitive sites by the replacement of amide linkage with imide linkage. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据