4.7 Article

Thin-film composite polyamide reverse osmosis membranes with improved acid stability and chlorine resistance by coating N-isopropylacrylamide-co-acrylamide copolymers

期刊

DESALINATION
卷 270, 期 1-3, 页码 248-257

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2010.11.052

关键词

Polyamide reverse osmosis membrane; Surface modification; Acid stability; Chlorine resistance; Poly(N-isopropylacrylamide-co-acrylamide)

资金

  1. National Nature Science Foundation of China (NNSFC) [20976167]
  2. Nature Science Foundation of Zhejiang Province [Y4080355]
  3. Science & Research Program of Zhejiang Province [2009C33069]
  4. Science Foundation of Zhejiang Sci-Tech University (ZSTU) [0713681]

向作者/读者索取更多资源

This study focus on the surface modification and the improved acid stability and chlorine resistance of the commercial thin-film composite polyamide reverse osmosis membranes coated with hydrophilic copolymers poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-Am)) surface layer. The virgin flat-sheet polyamide membranes were modified in situ with dilute P(NIPAM-co-Am) aqueous solution, and the modified membranes were then tested for their acid stability and chlorine resistance through long-term cross-flow permeation tests with aqueous solution containing 0.5 mol/l HCl and 2000 ppm NaCl and chlorine exposure experiments with hypochlorite aqueous solutions of different concentrations, respectively. The membrane properties were characterized in terms of reverse osmosis performance and surface chemical structure. The membrane modification was found to improve the chlorine tolerance and acid stability significantly. The P (NIPAM-co-Am) surface coating layer would impede the hydrolysis and the replacement of hydrogen with chlorine on the amide groups of the aromatic polyamide thin-film through enhancing intermolecular hydrogen bonding, and prevent the attack of acid and chlorine on the underlying polyamide film as a protective and sacrificial layer. The P(NIPAM-co-Am)-coated membrane would offer a potential use as a new type of thin-film composite polyamide membrane with improved acid stability and chlorine resistance. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据