4.0 Article

Putative PPAR Target Genes Express Highly in Skeletal Muscle of Insulin-Resistant MetS Model SHR/NDmc-cp Rats

期刊

出版社

CENTER ACADEMIC PUBL JAPAN
DOI: 10.3177/jnsv.61.28

关键词

insulin resistance; skeletal muscle; fatty acid oxidation; PPAR; SHR/Nllmc-cp rats

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [22680054]
  2. Takeda Science Foundation
  3. Grants-in-Aid for Scientific Research [22680054] Funding Source: KAKEN

向作者/读者索取更多资源

It is known that insulin resistance in skeletal muscle induces subsequent metabolic diseases such as metabolic syndrome (MetS). However, which genes are altered in the skeletal muscle by development of insulin resistance in animal models has not been examined. In this study, we performed microarray and subsequent real-time RT-PCR analyses using total RNA extracted from the gastrocnemius muscle of the MetS model, spontaneously hypertensive corpulent congenic (SHR/NDmc-cp) rats, and control Wistar Kyoto (WKY) rats. SHR/NDmc-cp rats displayed overt insulin resistance relative to WKY rats. The expression of many genes related to fatty acid oxidation was higher in SHR/NDmc-cp rats than in WKY rats. Among 18 upregulated genes, putative peroxisome proliferator responsive elements were found in the upstream region of 15 genes. The protein expression of ACOX2, an upregulated gene, and peroxisome proliferator-activated receptor (PPAR) G1, but not of PPARG2, PPARA or PPARD, was higher in the gastrocnemius muscle of SHR/Nllmc-cp rats than that in WKY rats. These results suggest that insulin resistance in the MetS model, SHR/NDmc-cp rats, is positively associated with the expression of fatty acid oxidation-related genes, which are presumably PPARs' targets, in skeletal muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据