4.7 Article

Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 26, 期 7, 页码 704-712

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2015.01.009

关键词

Cocoa; Glucose homeostasis; Glucose tolerance; Insulin resistance; Insulin signaling pathway; Type 2 diabetic ZDF rats

资金

  1. Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovacion) [AGL2010-17579, BFU2011-25420, CSD2007-00063]
  2. Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM, ISCIII)

向作者/读者索取更多资源

Insulin resistance is the primary characteristic of type 2 diabetes and results from insulin signaling defects. Cocoa has been shown to exert anti-diabetic effects by lowering glucose levels. However, the molecular mechanisms responsible for this preventive activity and whether cocoa exerts potential beneficial effects on the insulin signaling pathway in the liver remain largely unknown. Thus, in this study, the potential anti-diabetic properties of cocoa on glucose homeostasis and insulin signaling were evaluated in type 2 diabetic Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet. ZDF rats supplemented with cocoa (ZDF-Co) showed a significant decrease in body weight gain, glucose and insulin levels, as well as an improved glucose tolerance and insulin resistance. Cocoa-rich diet further ameliorated the hepatic insulin resistance by abolishing the increased serine-phosphorylated levels of the insulin receptor substrate 1 and preventing the inactivation of the glycogen synthase kinase 3/glycogen synthase pathway in the liver of cocoa-fed ZDF rats. The anti-hyperglycemic effect of cocoa appeared to be at least mediated through the decreased levels of hepatic phosphoenolpyruvate carboxykinase and increased values of glucokinase and glucose transporter 2 in the liver of ZDF-Co rats. Moreover, cocoa-rich diet suppressed c-Jun N-terminal kinase and p38 activation caused by insulin resistance. These findings suggest that cocoa has the potential to alleviate both hyperglycemia and hepatic insulin resistance in type 2 diabetic ZDF rats. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据