4.6 Article

Mechanical performance of novel bioactive glass containing dental restorative composites

期刊

DENTAL MATERIALS
卷 29, 期 11, 页码 1139-1148

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2013.08.207

关键词

Resin composite; Bioactive glass; Strength; Fracture toughness; Fatigue; Bacteria; Hydration

资金

  1. NIH/NIDCR [DE021372]

向作者/读者索取更多资源

Objectives. Bioactive glass (BAG) is known to possess antimicrobial properties and release ions needed for remineralization of tooth tissue, and therefore may be a strategic additive for dental restorative materials. The objective of this study was to develop BAG containing dental restorative composites with adequate mechanical properties comparable to successful commercially available composites, and to confirm the stability of these materials when exposed to a biologically challenging environment. Methods. Composites with 72 wt% total filler content were prepared while substituting 0-15% of the filler with ground BAG. Flexural strength, fracture toughness, and fatigue crack growth tests were performed after several different soaking treatments: 24 h in DI water (all experiments), two months in brain-heart infusion (BHI) media+Streptococcus mutans bacteria (all experiments) and two months in BHI media (only for flexural strength). Mechanical properties of new BAG composites were compared along with the commercial composite Heliomolar by two-way ANOVA and Tukey's multiple comparison test (p <0.05). Results. Flexural strength, fracture toughness, and fatigue crack growth resistance for the BAG containing composites were unaffected by increasing BAG content up to 15% and were superior to Heliomolar after all post cure treatments. The flexural strength of the BAG composites was unaffected by two months exposure to aqueous media and a bacterial challenge, while some decreases in fracture toughness and fatigue resistance were observed. The favorable mechanical properties compared to Heliomolar were attributed to higher filler content and a microstructure morphology that better promoted the toughening mechanisms of crack deflection and bridging. Signcance. Overall, the BAG containing composites developed in this study demonstrated adequate and stable mechanical properties relative to three successful commercial composites. (C) 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据