4.4 Article

The discovery of a natural whale fall in the Antarctic deep sea

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr2.2013.01.028

关键词

Osedax; Whale bone; Lipid; Bacterial mat; Minke whale; Taphonomy

资金

  1. NERC Consortium Grant [NE/DO1249X/1]
  2. NERC [NE/D01429X/1]
  3. NERC [NE/D01249X/1, bas0100026, NE/D013437/1] Funding Source: UKRI
  4. Natural Environment Research Council [NE/D01249X/1, bas0100026, NE/D013437/1] Funding Source: researchfish

向作者/读者索取更多资源

Large cetacean carcasses at the deep-sea floor, known as 'whale falls', provide a resource for generalist-scavenging species, chemosynthetic fauna related to those from hydrothermal vents and cold seeps, and remarkable bone-specialist species such as Osedax worms. Here we report the serendipitous discovery of a late-stage natural whale fall at a depth of 1444 m in the South Sandwich Arc. This discovery represents the first natural whale fall to be encountered in the Southern Ocean, where cetaceans are abundant. The skeleton was situated within a seafloor caldera, in close proximity (< 250 m) to active hydrothermal vents. We used a DNA barcoding approach to identify the skeleton as that of an Antarctic minke whale (Balaenoptera bonaerensis). The carcass was in an advanced state of decomposition, and its exposed bones were occupied by a diverse assemblage of fauna including nine undescribed species. These bone fauna included an undescribed species of Lepetodrilus limpet that was also present at the nearby hydrothermal vents, suggesting the use of whale-fall habitats as stepping stones between chemosynthetic ecosystems. Using Remotely Operated Vehicle (ROV) videography, we have quantified the composition and abundance of fauna on the whale bones, and tested a hypothesis that varying concentrations of lipids in the bones of whales may influence the microdistribution of sulfophilic whale-fall fauna. Our data supported the hypothesis that more lipid-rich bones support a greater abundance of sulfophilic bacterial mats, which are also correlated with the abundance of grazing limpets (Pyropelta sp.). The abundance of Osedax sp. on bones however, showed a negative correlation with the bacterial-mat percentage cover, and hence greatest abundance on bones predicted to have lowest lipid content. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据