4.5 Article

Absolute velocity along the AR7W section in the Labrador Sea

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr.2012.11.005

关键词

Labrador Sea; Boundary currents; Lowered acoustic doppler current profiler; Ocean heat transport; Geostrophic velocity; Deep ocean circulation; Meridional overturning

资金

  1. National Science Foundation [OCE-0622640]
  2. ocean climate monitoring program of the Department of Fisheries and Oceans Canada

向作者/读者索取更多资源

Nearly every spring since 1990, hydrographic data have been collected along a section in the Labrador Sea known as AR7W. Since 1995, lowered acoustic doppler current profiler (LADCP) data have also been collected. In this work we use data from six of these sections, spanning the time period 1995 through 2008, to determine absolute velocity across AR7W and analyze the main features of the general circulation in the area. We find that absolute velocity fields are characterized by strong, nearly barotropic flows all along the section, meaning there is no level of no motion for geostrophic velocity calculations. There is strong variability from year to year, especially in the strength of the boundary currents at each end; nevertheless, combining data from.all 6 sections yields a well-organized velocity field resembling that presented by Pickart and Spall (2007), except that our velocities tend to be stronger: there is a cyclonic boundary current system with offshore recirculations at both ends of the line; the interior is filled with virtually uniform, top-to-bottom bands of velocity with alternating signs. At the southwestern end of the section, the LADCP data reveal a dual core of the Labrador Current at times when horizontal resolution is adequate. At the northeastern end, the location of the recirculation offshore of the boundary current is bimodal, and hence the apparent width of the boundary current is bimodal as well. In the middle of the section, we have found a bottom current carrying overflow waters along the Northwest Atlantic Mid-Ocean Channel, suggesting one of various possible fast routes for those waters to reach the central Labrador Sea. We have used the hydrographic data to compute geostrophic velocities, referenced to the LADCP profiles, as well as to compute ocean heat transport across AR7W for four of our sections. For all but one year, these fluxes are comparable to the mean air-sea heat flux that occurs between AR7W and Davis Strait from December to May (O(50-80 TW)), and much larger than the annual average values (O(10-20 TW)). (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据