4.5 Article

Revised circulation scheme north of the Denmark Strait

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr.2013.05.007

关键词

Denmark Strait; East Greenland Current; North Icelandic Jet; Blosseville Basin; Denmark Strait Overflow Water; Arctic freshwater export

资金

  1. Norwegian Research Council
  2. European Union [308299 NACLIM]
  3. US National Science Foundation [OCE-0959381, OCE-0850416]
  4. Natural Sciences and Engineering Research Council of Canada
  5. Directorate For Geosciences
  6. Division Of Ocean Sciences [0850416, 0959381] Funding Source: National Science Foundation

向作者/读者索取更多资源

The circulation and water mass transports north of the Denmark Strait are investigated using recently collected and historical in situ data along with an idealized numerical model and atmospheric reanalysis fields. Emphasis is placed on the pathways of dense water feeding the Denmark Strait Overflow Water plume as well as the upper-layer circulation of freshwater. It is found that the East Greenland Current (EGC) bifurcates at the northern end of the Blosseville Basin, some 450 km upstream of the Denmark Strait, advecting overflow water and surface freshwater away from the boundary. This separated EGC flows southward adjacent to the previously identified North Icelandic Jet, indicating that approximately 70% of the Denmark Strait Overflow Water approaches the sill along the Iceland continental slope. Roughly a quarter of the freshwater transport of the EGC is diverted offshore via the bifurcation. Two hypotheses are examined to explain the existence of the separated EGC. The atmospheric fields demonstrate that flow distortion due to the orography of Greenland imparts significant vorticity into the ocean in this region. The negative wind stress curl, together with the closed bathymetric contours of the Blosseville Basin, is conducive for spinning up an anti-cyclonic gyre whose offshore branch could represent the separated EGC. An idealized numerical simulation suggests instead that the current is primarily eddy-forced. In particular, baroclinic instability of the model EGC spawns large anti-cyclones that migrate offshore and coalesce upon reaching the Iceland continental slope, resulting in the separated EGC. Regardless of the formation mechanism, the recently obtained shipboard data and historical hydrography both indicate that the separated EGC is a permanent feature of the circulation north of the Denmark Strait. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据