4.5 Article

Temporal variations and trends of CFC11 and CFC12 surface-water saturations in Antarctic marginal seas: Results of a regional ocean circulation model

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr.2009.09.008

关键词

Tracers; Chlorofluorocarbons; Saturation; Antarctic bottom water; Southern ocean; Tracer inventory

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [Ro 318/43]
  2. National Ocean and Atmospheric Administration (NOAA) [NA04OAR4310122]

向作者/读者索取更多资源

The knowledge of chlorofluorocarbon (CFC11, CFC12) concentrations in ocean surface waters is a prerequisite for deriving formation rates of, and water mass ages in, deep and bottom waters on the basis of CFC data. In the Antarctic coastal region, surface-layer data are sparse in time and space, primarily due to the limited accessibility of the region. To help filling this gap, we carried Out CFC simulations using a regional ocean general circulation model (OGCM) for the Southern Ocean, which includes the ocean-ice shelf interaction. The simulated surface layer saturations, i.e. the actual surface concentrations relative to solubility-equilibrium values, are verified against available observations. The CFC surface saturations driven by concentration gradients between atmosphere and ocean are controlled mainly by the sea ice cover, sea surface temperature, and salinity. However, no uniform explanation exists for the controlling mechanisms. Here, we present simulated long-term trends and seasonal variations of surface-layer saturation at Southern Ocean deep and bottom water formation sites and other key regions, and we discuss differences between these regions. The amplitudes of the seasonal saturation cycle vary from 22% to 66% and their long-term trends range from 0.1%/year to 0.9%/year. The seasonal surface saturation maximum lags the ice cover minimum by two months. By utilizing observed bottle data the full seasonal CFC saturation cycle can be determined offering the possibility to predict long-term trends in the future. We show that ignoring the trends and using instead the saturations actually observed can lead to systematic errors in deduced inventory-based formation Fates by up to 10% and suggest an erroneous decline with time. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据