4.7 Article

White light emitting MgAl2O4:Dy3+,Eu3+ nanophosphor for multifunctional applications

期刊

DALTON TRANSACTIONS
卷 47, 期 35, 页码 12228-12242

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8dt02227e

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), the Government of India

向作者/读者索取更多资源

Feeble white emission with a low Colour Rendering Index (CRI) has become the principal gridlock for the extensive commercialization of phosphor converted white LEDs (pc-WLEDs). Fusion of red, green and blue emitting rare-earth (RE) ions in a suitable host can overcome these drawbacks but the energy migration between multiple RE ions at single excitation wavelength defines the key standpoint in designing such white light emitting phosphors. Apart from the abovementioned obstacles, recently traditional optical temperature sensors based on RE ions have faced difficulties due to their low relative sensitivity and large detection error. Keeping these points in mind, in this work, a series of MgAl2O4:Dy3+,Eu3+ nanophosphors are synthesized among which 2% Dy3+,0.2% Eu3+ doped MgAl2O4 nanophosphors demonstrate strong white emission with CIE co-ordinates of (0.31, 0.33), and high quantum yield (approximate to 67%), which could be directly utilized for pc-WLED based solid state lighting devices. Detailed investigation of PL properties reveals that Eu3+ ions can be well sensitized by Dy3+ under near-ultraviolet excitation of 351 nm. Dexter's theory & Reisfeld's approximation are employed for an in-depth analysis of the inter-RE energy transfer (ET) mechanism, which signposts that the dipole-quadrupole interaction phenomenon is responsible for the ET process from Dy3+ to Eu3+. Additionally, the validated ET plays a pivotal role in demonstrating the self-referencing ratiometric temperature sensor behaviour supported by a distinct high temperature thermal quenching trend between Dy3+ and Eu3+ ions. Hence the obtained nanophosphors are highly promising for utilizing in WLED based solid state lighting and self-referencing ratiometric temperature sensor applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据