4.7 Article

Electrochemical study of specially designed graphene-Fe3O4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery

期刊

DALTON TRANSACTIONS
卷 47, 期 42, 页码 15031-15037

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8dt03107j

关键词

-

资金

  1. National Natural Science Foundation of China [51850410508]
  2. China Postdoctoral Science Foundation [2018M633502]

向作者/读者索取更多资源

In this work, an anode material with improved thermal stability, charge capacity, charge capacity retention, energy density, cyclic performance, operation safety, reversible capacity, and rate capability was synthesized for battery applications. The graphene-magnetite-polyaniline (Gr-Fe3O4-PANI) nanocomposites (NCs) are believed to deliver outstanding performance owing to the collective effect of the layered graphene (Gr) and magnetite (Fe3O4) hollow rods (HRs), as well as the better conductivity of polyaniline (PANI). The Gr-Fe3O4-PANI NCs easily enable the insertion and deinsertion of Li+, the passage of ions in the electrode, fast kinetics of Li+, and low volume expansion. Gr-Fe3O4-PANI NC was prepared by polymerizing aniline in the presence of already prepared Fe3O4 HRs, then dispersing in Gr. Fe3O4 HRs were synthesized by a hydrothermal route. Electrochemical properties were investigated by galvanostatic charge-discharge analysis and cyclic voltammetry. A lithium-ion battery (LIB) based on the Gr-Fe3O4-PANI exhibited a superior reversible current capacity of 1214 mA h g(-1), excellent power capability, low volume expansion, high cycling stability and 99.6% coulombic efficiency over 250 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据