4.7 Article

Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles

期刊

DALTON TRANSACTIONS
卷 43, 期 4, 页码 1854-1861

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3dt52468j

关键词

-

资金

  1. National Science and Technology Support Program [2012BAC07B05]
  2. Science Foundation for Distinguished Young Scholars of Guangdong Province
  3. Natural Science Foundation of China
  4. Guangdong Province
  5. Program for New Century Excellent Talents in University
  6. Research Fund for the Doctoral Program of Higher Education of China
  7. China Postdoctoral Science Foundation

向作者/读者索取更多资源

The use of selenium for anticancer therapy has been heavily explored during the last decade. Amino acids (AAs) play central roles both as building blocks of proteins and intermediates in metabolism. In the present study, AAs-modified selenium nanoparticles (SeNPs@AAs) have been successfully synthesized in a simple redox system. Typical neutral (valine), acidic (aspartic acid) and basic (lysine) amino acids were used to decorate SeNPs, and the stable and homodisperse nanoparticles were characterized by zeta potential and transmission electron microscope. The result of X-ray photoelectron spectra (XPS) showed that the interaction of -NH3+ groups of the amino acids with negative-charged SeNPs could be a driving force for dispersion of the nanoparticles. The screening of in vitro anticancer activities demonstrated that SeNPs@AAs exhibited differential growth inhibitory effects on various human cancer cell lines. Among them, SeNPs decorated by Lys displayed higher anticancer efficacy than those of valine and aspartic acid. The studies on the in vitro cellular uptake mechanisms revealed that SeNPs@AAs were internalized by cancer cells through endocytosis. Flow cytometric analysis and the determination of caspase activity indicated that treatment of the MCF-7 breast adenocarcinoma cells with SeNPs@AAs led to a dose-dependent increase in apoptosis. Moreover, it was found that SeNPs@AAs-induced ROS overproduction could be the upstream signal of caspase activation and mitochondrial dysfunction in cancer cells. Taken together, our results suggest that these amino acid biocompatible nanoparticles might have potential application as chemopreventive and chemotherapeutic agents for human cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据