4.7 Article

Fabrication of thermally stable and active bimetallic Au-Ag nanoparticles stabilized on inner wall of mesoporous silica shell

期刊

DALTON TRANSACTIONS
卷 42, 期 38, 页码 13940-13947

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3dt51546j

关键词

-

资金

  1. National Science Foundation for Distinguished Young Scholars of China [51025517]
  2. National Defense Basic Scientific Research Project [A1320110011]

向作者/读者索取更多资源

A general method has been developed for the fabrication of highly dispersed and thermally stable bimetallic Au-Ag nanoparticles (NPs) stabilized on the inner wall of a mesoporous silica shell. In our approach, gold particles were formed in the first step on carbon spheres decorated with Sn2+ cations. Upon Ag+ adsorption and reduction by L-ascorbic acid in the second step, specific nanoparticles with a gold-silver alloy core and a silver nanoshell have been formed. Important evidence of the core-shell configurations of the bimetallic Au-Ag nanoparticles were clearly characterized by UV-vis, TEM and HAADF-STEM observations combined with elemental mapping and line scans. The mesoporous silica outer shell was obtained through the hydrolysis and condensation of the precursors tetraethoxysilane (TEOS) in a basic condition and cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. On this basis, the nanoreactors were fabricated after calcination, which further serves as a nanoreactor for the reduction of p-nitrophenol. Furthermore, such particles have been found to be thermally stable and their sizes remain substantially unchanged even upon calcination in air at 500 degrees C and a reduction treatment in H-2. Potentially, the method can be developed into a general approach to synthesize other highly dispersed and thermally stable bimetallic nanoparticles stabilized on the inner wall of a mesoporous silica shell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据